Enter a problem...
Linear Algebra Examples
Step 1
Set up the formula to find the characteristic equation .
Step 2
The identity matrix or unit matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere.
Step 3
Step 3.1
Substitute for .
Step 3.2
Substitute for .
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply by each element of the matrix.
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply by .
Step 4.1.2.2
Multiply .
Step 4.1.2.2.1
Multiply by .
Step 4.1.2.2.2
Multiply by .
Step 4.1.2.3
Multiply .
Step 4.1.2.3.1
Multiply by .
Step 4.1.2.3.2
Multiply by .
Step 4.1.2.4
Multiply .
Step 4.1.2.4.1
Multiply by .
Step 4.1.2.4.2
Multiply by .
Step 4.1.2.5
Multiply by .
Step 4.1.2.6
Multiply .
Step 4.1.2.6.1
Multiply by .
Step 4.1.2.6.2
Multiply by .
Step 4.1.2.7
Multiply .
Step 4.1.2.7.1
Multiply by .
Step 4.1.2.7.2
Multiply by .
Step 4.1.2.8
Multiply .
Step 4.1.2.8.1
Multiply by .
Step 4.1.2.8.2
Multiply by .
Step 4.1.2.9
Multiply by .
Step 4.2
Add the corresponding elements.
Step 4.3
Simplify each element.
Step 4.3.1
Add and .
Step 4.3.2
Add and .
Step 4.3.3
Add and .
Step 4.3.4
Add and .
Step 4.3.5
Add and .
Step 4.3.6
Add and .
Step 5
Step 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
Step 5.1.1
Consider the corresponding sign chart.
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 5.1.3
The minor for is the determinant with row and column deleted.
Step 5.1.4
Multiply element by its cofactor.
Step 5.1.5
The minor for is the determinant with row and column deleted.
Step 5.1.6
Multiply element by its cofactor.
Step 5.1.7
The minor for is the determinant with row and column deleted.
Step 5.1.8
Multiply element by its cofactor.
Step 5.1.9
Add the terms together.
Step 5.2
Multiply by .
Step 5.3
Multiply by .
Step 5.4
Evaluate .
Step 5.4.1
The determinant of a matrix can be found using the formula .
Step 5.4.2
Simplify the determinant.
Step 5.4.2.1
Simplify each term.
Step 5.4.2.1.1
Expand using the FOIL Method.
Step 5.4.2.1.1.1
Apply the distributive property.
Step 5.4.2.1.1.2
Apply the distributive property.
Step 5.4.2.1.1.3
Apply the distributive property.
Step 5.4.2.1.2
Simplify and combine like terms.
Step 5.4.2.1.2.1
Simplify each term.
Step 5.4.2.1.2.1.1
Multiply by .
Step 5.4.2.1.2.1.2
Multiply by .
Step 5.4.2.1.2.1.3
Multiply by .
Step 5.4.2.1.2.1.4
Rewrite using the commutative property of multiplication.
Step 5.4.2.1.2.1.5
Multiply by by adding the exponents.
Step 5.4.2.1.2.1.5.1
Move .
Step 5.4.2.1.2.1.5.2
Multiply by .
Step 5.4.2.1.2.1.6
Multiply by .
Step 5.4.2.1.2.1.7
Multiply by .
Step 5.4.2.1.2.2
Add and .
Step 5.4.2.1.3
Multiply by .
Step 5.4.2.2
Add and .
Step 5.4.2.3
Reorder and .
Step 5.5
Simplify the determinant.
Step 5.5.1
Combine the opposite terms in .
Step 5.5.1.1
Add and .
Step 5.5.1.2
Add and .
Step 5.5.2
Expand by multiplying each term in the first expression by each term in the second expression.
Step 5.5.3
Simplify each term.
Step 5.5.3.1
Multiply by .
Step 5.5.3.2
Multiply by .
Step 5.5.3.3
Multiply by by adding the exponents.
Step 5.5.3.3.1
Move .
Step 5.5.3.3.2
Multiply by .
Step 5.5.3.3.2.1
Raise to the power of .
Step 5.5.3.3.2.2
Use the power rule to combine exponents.
Step 5.5.3.3.3
Add and .
Step 5.5.3.4
Rewrite using the commutative property of multiplication.
Step 5.5.3.5
Multiply by by adding the exponents.
Step 5.5.3.5.1
Move .
Step 5.5.3.5.2
Multiply by .
Step 5.5.3.6
Multiply by .
Step 5.5.3.7
Multiply by .
Step 5.5.4
Combine the opposite terms in .
Step 5.5.4.1
Add and .
Step 5.5.4.2
Add and .
Step 5.5.5
Add and .
Step 5.5.6
Move .
Step 5.5.7
Reorder and .